from langchain_community.llms import Ollama from langchain.chains import LLMChain from langchain.prompts import PromptTemplate from langchain_community.vectorstores import Chroma from langchain_community.embeddings import OllamaEmbeddings from langchain_community.document_loaders import TextLoader from langchain_text_splitters import CharacterTextSplitter from langchain.memory import ConversationBufferWindowMemory import os from dotenv import load_dotenv from tempfile import NamedTemporaryFile # Load environment variables load_dotenv() # Initialize Ollama LLM and Embeddings llm = Ollama(model="tinyllama", temperature=0.7) embeddings = OllamaEmbeddings(model="tinyllama") # Initialize global Chroma vector store (in-memory) vector_store = Chroma.from_texts([""], embeddings) # Initialize empty store # Function to index uploaded file def index_file(file_content: bytes, file_name: str): with NamedTemporaryFile(delete=False, suffix=os.path.splitext(file_name)[1]) as temp_file: temp_file.write(file_content) temp_file_path = temp_file.name loader = TextLoader(temp_file_path) documents = loader.load() # Split documents into chunks text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=200) chunks = text_splitter.split_documents(documents) # Add to vector store vector_store.add_documents(chunks) # Clean up temp file os.unlink(temp_file_path) # Define prompt templates def get_prompt_with_history(memory): return PromptTemplate( input_variables=["history", "question"], template=f"Previous conversation:\n{{history}}\n\nResponda à seguinte pergunta: {{question}}" ) def get_prompt_with_history_and_docs(memory, docs): docs_text = "\n".join([f"Source: {doc.page_content}" for doc in docs]) if docs else "No relevant documents found." return PromptTemplate( input_variables=["history", "question"], template=f"Previous conversation:\n{{history}}\n\nRelevant documents:\n{docs_text}\n\nResponda à seguinte pergunta usando as fontes relevantes e citando trechos como fontes: {{question}}" ) def get_answer(session_id: str, question: str) -> str: # Get or initialize memory for this session memory = ConversationBufferWindowMemory(memory_key="history", input_key="question", k=3, session_id=session_id) # Create chain with dynamic prompt including history prompt = get_prompt_with_history(memory) chain = LLMChain(llm=llm, prompt=prompt, memory=memory) # Get response response = chain.run(question=question) response = response[:100] if len(response) > 100 else response # Truncate if needed return response # RAG function for /ask endpoint def ask_rag(session_id: str, question: str, file_content: bytes = None, file_name: str = None) -> dict: # Get or initialize memory for this session memory = ConversationBufferWindowMemory(memory_key="history", input_key="question", k=3, session_id=session_id) if file_content and file_name: index_file(file_content, file_name) # Retrieve relevant documents docs = vector_store.similarity_search(question, k=3) # Create chain with dynamic prompt including history and docs prompt = get_prompt_with_history_and_docs(memory, docs) chain = LLMChain(llm=llm, prompt=prompt, memory=memory) # Get response response = chain.run(question=question) response = response[:100] if len(response) > 100 else response # Prepare sources sources = [doc.page_content for doc in docs] return {"answer": response, "sources": sources} if __name__ == "__main__": session_id = "test_session" print(get_answer(session_id, "Qual a capital da França?")) print(get_answer(session_id, "E a capital da Espanha?"))